Integration indirekter Landnutzungsänderungen in die THG-Bilanz von Biokraftstoffen

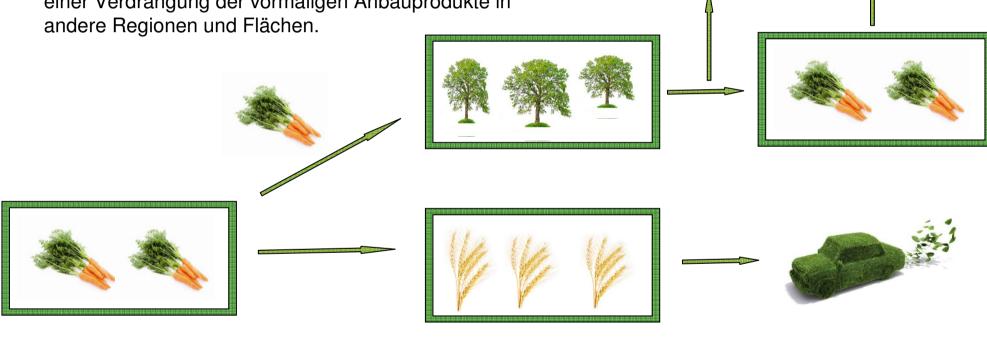
Fair Fuels? Zwischen Sackgasse und Energiewende: Eine sozial-ökologische Mehrebenenanalyse transnationaler Biokraftstoffpolitik

Ökobilanz Werkstatt 2010 Darmstadt, 1.10.10 Elisa Dunkelberg IÖW – Institut für ökologische Wirtschaftsforschung, Berlin

Inhalt

- Problemhintergrund und Zielsetzung
- Politische Regelungen / Zertifizierungssysteme
- Quantifizierung von iLUC
 - Ökonometrische Modelle
 - Deterministische Modelle
- Schlussfolgerungen und Hypothesen

Problemhintergrund



 CO_2

 CO_2

Der Anbau von Agrarprodukten auf einer Fläche führt zu einer Verdrängung der vormaligen Anbauprodukte in andere Regionen und Flächen

 $i | \ddot{o} | w$

EU Richtlinie 2009/28

- 35% THG-Reduktion im Vergleich zu fossilen Kraftstoffen, bis 2017 50%
- Methode zur
 Minimierung von THG
 aus iLUC
- Überprüfung der Aufnahme eines iLUC-Faktors bis Ende 2010

Zertifizierung

 ISCC – keine Berücksichtigung von iLUC

- 2007: erste Studie zur Quantifizierung von iLUC
- 2 unterschiedliche Ansätze zur Quantifizierung
 - Ökonometrische Modelle:
 Verdrängung von Nahrungs- oder Futtermitteln ->
 Preissteigerungen der Produkte -> Neuschaffung von landwirtschaftlichen Flächen
 - Deterministische Modelle:
 Basieren auf einfachen Annahmen

- Modelle zur Prognostizierung von Marktveränderungen durch agrarpolitische Maßnahmen
- Verwendung vorhandener Modelle zur Abschätzung von iLUC:
 - Allgemeine ökonometrische Gleichgewichtsmodelle
 - GTAP, LEITAP, MIRAGE, DART
 - und partielle Gleichgewichtsmodelle
 - FASOM, FAPRI
- Verknüpfung mit biophysikalischen Modellen -> Berechnung von THG-Emissionen

- Problem der fehlenden Vergleichbarkeit der Ergebnisse
 - Verwendung der Modelle für bestimmte Politikszenarien, unterschiedliche Biokraftstoffzielwerte, unterschiedliche Biokraftstoffe
- 2010: Berechnung gleicher Szenarien mit allen Modellen im Auftrag der Europäischen Kommission (s. Edwards et al. 2010)
 - Relevante iLUC-Effekte in allen Modellen
 - aber weit auseinander liegende Ergebnisse: z.B. 242 1928
 kHa / Mtoe Biokraftstoff im EU-Biodieselszenario

Gründe für die Abweichungen:

- Berücksichtigung von Nebenprodukten sowie ungenutzter Flächen
- Ertragssteigerungen infolge h\u00f6herer erzielbarer Preise
- Verschiebung der Produktion in weniger entwickelte Länder mit niedrigen Erträgen

– Allgemeine Kritikpunkte:

- Fehlende Berücksichtigung von Marktverzerrungen
- Fehlende Nachvollziehbarkeit aufgrund der hohen Komplexität der Modelle
- Zu geringe Komplexität, um alle Faktoren zu berücksichtigen

Beispiel: iLUC-Faktor des Öko-Instituts (s. Fritsche et al. 2010)

- Explizite, vereinfachte Annahmen
 - Landnutzung zur Herstellung gehandelter Agrarprodukte -> globale Durchschnittswerte THG-Emissionen
 - Zukünftiger Handel auf Basis derzeitiger Trends ableitbar

- Vorgehensweise

- Vereinfachung: relevanteste Regionen Argentinien, Brasilien, EU, Indonesien, USA
- Summe der für die Produkte benötigten Flächen -> Anteil der Länder am Gesamtflächenbedarf (World Mix)

- Vorgehensweise

- Anteil der zusätzlich benötigten Flächen entspricht World Mix
- Typische verdrängte Landnutzungen in den Regionen (z.B. Grasland in EU, tropischer Regenwald in Indonesien)
- IPCC-Kohlenstoffgehalte -> theoretisches Emissionspotenzial
 270 t CO₂/ha (13 t CO₂/(ha*a))
- Ertragssteigerungen -> maximaler iLUC-Faktor 75 %
- Weitere Effizienzsteigerungen, ungenutzte Flächen: 25-75% des Maximalwertes
- Hektarerträge und Konversionsfaktoren -> spezifischer Werte für die jeweiligen Biokraftstoffe (iLUC-Faktoren)

Ergebnisse

- 25%-iLUC-Faktor: 1. Generation erreicht THG-Reduktionsziel der EU von 35% mehrheitlich nicht
- 50%-iLUC-Faktor: einige Kraftstoffe schneiden schlechter als fossile Kraftstoffe ab, wenige Kraftstoffe erreichen 35%-Ziel (Zuckerrohr auf degradierten Flächen)

Kritikpunkte

- Außer Acht lassen des intranationalen Handels
- Bioenergieträgern mit hohen Flächenerträgen -> Schlechtes Abschneiden 1. Generation
- Außer Acht lassen der Bereitstellung proteinreicher Nebenprodukte -> "Frei" werdende Flächen
- Außer Acht lassen problematischer, realer LUC und iLUC-Effekte (Palmölanbau Südostasien, Zuckerrohr Brasilien)

Beobachtungen

- Zeitdruck aufgrund der politischen Regelungen
- Ergebnisse 1. Generation bedenklich
- Ergebnisse -> hohe Spannweite
- Beobachtung realer Effekte fehlt weitestgehend (Ausnahme Lapola et al. 2010)

Offene Fragen / Hypothesen

- Länderspezifische Faktoren (Landbesitzverhältnisse)
- Biokraftstoffspezifische Faktoren (Ertrag, Nebenprodukte)

- Gnansounou, E., L. Panichelli, A. Dauriat, und J.D. Villegas (2008): Accounting for indirect land-use changes in GHG balances of biofuels: Review of current approaches. http://infoscience.epfl.ch/record/121496 (Zugegriffen 6. April 2010).
- Edwards, R., D. Mulligan, und L. Marelli (2010): *Indirect land use change from increased biofuels demand*. European Commission, Joint Research Insitute. http://re.jrc.ec.europa.eu/bf-tp/download/ILUC_modelling_comparison.pdf (Zugegriffen 20. September 2010).
- Fritsche, U.R., und K. Wiegmann (2008): *Treibhausgasbilanzen und kumulierter Primärenergieverbrauch von Bioenergie-Konversionspfaden unter Berücksichtigung möglicher Landnutzungsänderungen*. Berlin: Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen. www.wbgu.de (Zugegriffen 20. August 2010).
- Fritsche, U.R., K. Hennenberg, und K. Hünecke (2010): *The "iLUC Factor" as a means to hedge risks of ghg emissions from indirect land use change*. Darmstadt: Öko-Institut. http://www.oeko.de/oekodoc/1030/2010-082-en.pdf (Zugegriffen 20. August 2010).
- Lapola, D.M., R. Schaldach, J. Alcamo, A. Bondeau, J. Koch, C. Koelking, und J.A. Priess (2010): Indirect land-use changes can overcome carbon savings from biofuels in Brazil. *Proceedings of the National Academy of Sciences* 107, no. 8: 3388-3393.

Vielen Dank für Ihre Aufmerksamkeit.

Elisa Dunkelberg

IÖW – Institut für ökologische Wirtschaftsforschung, Berlin elisa.dunkelberg@ioew.de

1.10.2010

