

Thermische Nutzung von biogenen Rest- und Abfallstoffen

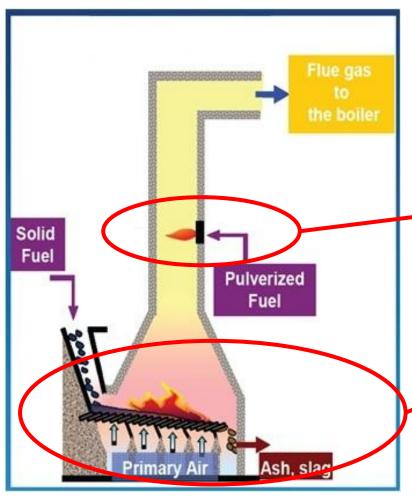
Dipl.-Ing. Kai Sartorius Ökobilanz-Werkstatt 2011

Institut für Technikfolgenabschätzung und Systemanalyse Zentralabteilung Technikbedingte Stoffströme (ITAS-ZTS)

Inhalt

- Einleitung
- Kraftwerkskonzept
- Brennstoffe
- Stoffstrommodell
- Upscaling

Einleitung


Dissertationsprojekt: "Systemanalytische Untersuchung von Potentialen für kleine und mittelgroße Kraftwerke für schwierige Brennstoffe."

- → Entwicklungsbegleitende Ökobilanzierung
 - Leistung: 20 50 MW_{el}
 - Einsatz von Rest- und Abfallstoffen
 - Regionale Brennstoffe (<100 km)
 - Musterregion: Karlsruhe?

Kraftwerkskonzept

Kombination von Rost- und Staubfeuerung

Staubfeuerung für **Spitzenlast**

Rostfeuerung für **Grundlast**

Quelle: ITC-TAB

Beispiele für "schwierige" Brennstoffe

- Waldrestholz
- Stroh
- Kleie
- Straßenkehricht
- (Klärschlamm)
- Ersatzbrennstoffe

Quelle: de.wikipedia.org

Warum "schwierige" Brennstoffe?

Nachteile:

- Hoher Aschegehalt
- Hoher Feuchtigkeitsgehalt
- Niedriger Brennwert
- Niedriger Ascheschmelzpunkt

Saisonal schwankende Qualität und Verfügbarkeit

Brennstoffeigenschaften

Brennstoff	Wasser- gehalt [%]	Asche- gehalt [%] (wf)	Asche- erweichungs- punkt [°C]	Heizwert [MJ/kg] (wf)	BIOGehalt [%]
Holzartige	15 - 60	< 5	> 1250	18,5	100
Halmgutartige	15 - 40	5-10	< 1000	17,5	100
Straßengrasschnitt	15 - 40	25	1200	14,0	100
Strohkoks	0	15	n.b.	25,0	>95
Steinkohle	3	9	1250	28,0	0
Braunkohle	15 - 50	6	1050	23,0	0

Quelle: "Leitfaden Bioenergie: Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen", Fachagentur nachwachsende Rohstoffe (Hrsg.) 2000 und eigene Messungen

Deshalb: Saisonal wechselnde Inputs

Frühjahr: Landschaftspflegematerial?

Sommer: Stroh?

Quelle: de.wikipedia.org

Herbst: Straßenkehricht?

Winter: Waldrestholz?

Quelle: de.wikipedia.org

Warum also "schwierige" **Brennstoffe nutzen?**

- Derzeit gibt es noch ungenutzte Potentiale erneuerbarer Energieträger
- Aufgrund geringer Nachfrage sind diese häufig Preiswert verfügbar

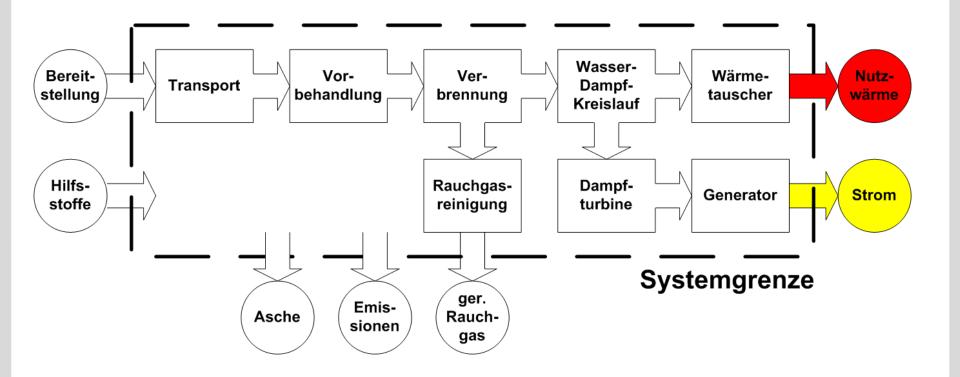
Potentiale in Baden-Württemberg

Energetisch Nutzbares Potential von Stroh: 1 mio Mg TM

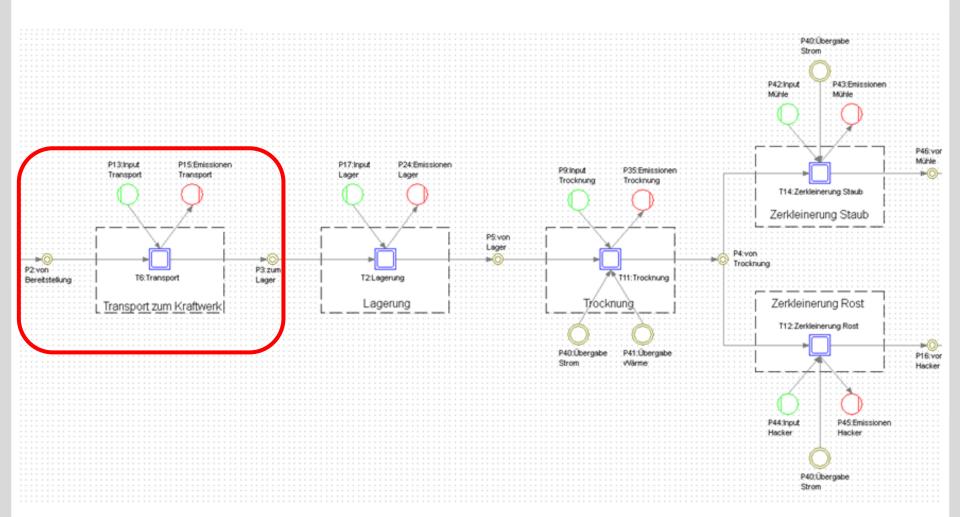
Bei einem mittleren Heizwert von 17,2 MJ/kg ergeben sich $1.7 * 10^{10} MJ = 4.8 TWh$

- → Kraftwerk mit **685 MW**_{th} Leistung (bei 7000 h/a)
- Energetisch nutzbares Potential von Waldrestholz: 1,7 mio Mg TM

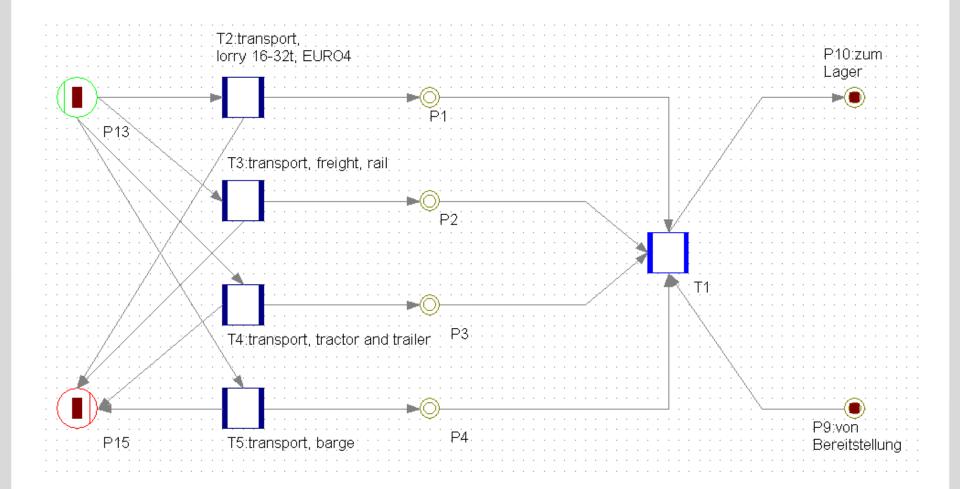
Bei einem mittleren Heizwert von 18,5 MJ/kg ergeben sich $3.1 * 10^{10} MJ = 8.7 TWh$


→ Kraftwerk mit **1250 MW**_{th} Leistung (bei 7000 h/a)

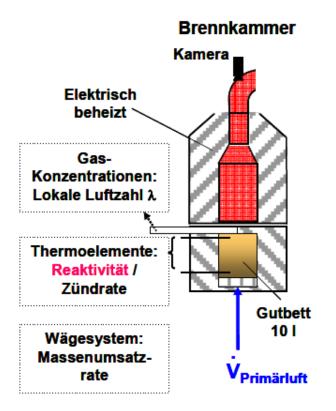
Quelle: Wissenschaftliche Berichte FZKA 7170

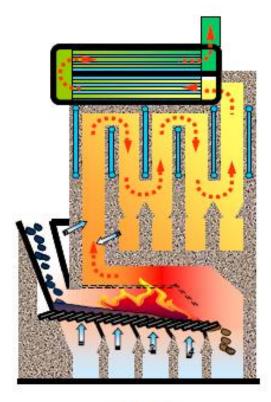

Systemgrenzen

Umberto Modell: Ausschnitt Ebene 1



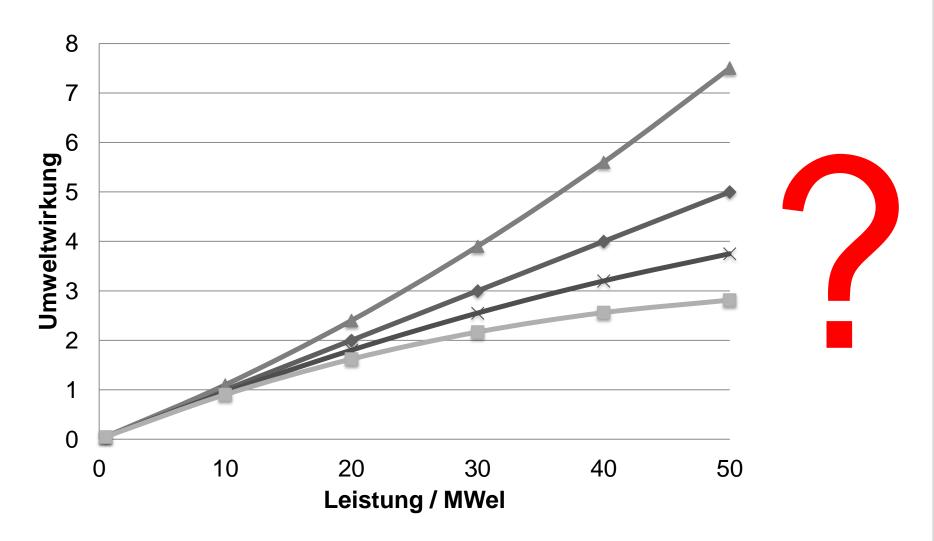
Umbertomodell: Ebene 2 – Beispiel Transport




Upscaling

Labor

Kraftwerk


Mg/h

10 kg

Ziel: Entwicklung von Upscalingfunktionen

Upscaling-Effekt, eigene Darstellung

Vielen Dank!

kai.sartorius@kit.edu

