

Operational LCA guidance for hydrogen production

FC-Hy Guide 6. September 2012 Stuttgart

LCA GUIDANCE FOR ASSESSING HYDROGEN PRODUCTION METHODOLOGICAL APPROACH AND RESULTS

A. Lozanovski

History

HyGuide

 Sector specific tailor-made guidance document for hydrogen production

 Funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

Basis of the guidance document

Life Cycle Engineering (GaBi)

Preparation of the guidance document

Evaluation of hydrogen pathways

31.08.2011

Results

- Information of the facility and the hydrogen
- Function, functional unit and reference flow:
 1MJ H₂ @ XX bar, YY °C, ZZ,ZZ% purity

Results

Planning data collection

Collection of unit process data

 Filling data gaps and usage of background data sets (e.g. ILCD)

Set up of LCA model(s)

Calculation of LCI results

Source: www.fuel-cell-bus-club.com

3. Data collection questionnaire – general part –

Part I: General information on hydrogen		
production		unit
Please attach an additional sheet including a system functioning scheme	and system's basic o	******
Hydrogen related information	ana cyclom c bacic c	omponone.
[please add rows and other fields if needed]		
Purity of the hydrogen (XX %)		%
Aggregate state (liquid or gaseous) of the hydrogen		
Pressure of the hydrogen (YY bar)		bar
Temperature of the hydrogen (ZZ °C)		°C
Impurities (please state them below, if known)		%
Type of Impurities		1
Amount		%
Quantity produced by volume		Nm³/h or Nm³/yea
Quantity produced by mass		kg/h or kg/year
Description of hydrogen producer (general information on the producer)		
[please add rows and other fields if needed]		
Overall hydrogen production capacity (of the production company)		m³
Number of hydrogen production sites		No.
Hydrogen production technologies used (e.g. steam reformer, electrolysis etc.)		
Geographical coverage by region (where are the major production locations of the producer)		country or region
Description of the product system under investigation		
[please add rows and other fields if needed]		
Hydrogen production technology used		
Location of the production site		country or region
Year of construction		
Is there electricity produced on-site used		yes/no
Amount of electricity produced on-site used (if applicable)		kWh/MJ hydrogen
Type of electricity production on-site (if applicable)		
Is there heat produced on-site used in the production of H ₂		
Type of heat production on-site, e.g. gas boiler, oil CHP etc. (if applicable)		
Amount of heat production on-site (if applicable)		MJ/MJ hydrogen
H ₂ production capacity per day		Nm³/year or MJ/yea
H ₂ production capacity per year		Nm³/year or MJ/yea
Technical service life of H ₂ production		
Scale of production site (laboratory, pre-commercial, commercial scale)		
Type of storage (including e.g. liquefaction facility or other device)		
Capacity of storage		Nm³

10

3. Data collection questionnaire– specific part –

Bort III. Hadronon madelation has store						
Part II: Hydrogen production by stea	am reforming		unit			
Hydrogen production - Functional unit is "1 MJ of hydro	ogen (net calorific va	product)				
[please add rows and other fields if needed]	ogen (net outerme va	inde (1101) William XX	o parity and 11 be			
Input						
Natural gas (if applicable)			Nm³/MJ hydrogen			
Net calorific value of the natural gas used			MJ/Nm³			
Liquefied petroleum gas (if applicable)			kg/MJ hydrogen			
Net calorific value of the liquefied petroleum gas used (if applicable)			kg/Nm³			
Refinery gas (if applicable)			Nm³/MJ hydrogen			
Net calorific value of the refinery gas used (if applicable)			MJ/Nm³			
Other process gases (e.g. off gas from H ₂ purification) (please specify if	annlicable)		m³/M.I hvdrogen			
Net calorific value of the process gas used (if applicable)						
Composition of the process gas (e.g.% H2, % CO2 etc.) (if applicable	Part III: Hydrogen production by electrolysis					
Cooling water		•	•	•	product)	unit
Temperature of the cooling water	Hydrogen production - Functional unit is "1 MJ of hydrogen (net calorific value (NCV) with XX % purity and YY					
Tap water	Method of production: Alkaline electrolysis					
Average temperature of the tap water	[please add rows and other fields if needed]					
Electricity	Input	•				
Operating supplies and spare parts (e.g. kg catalyst for reformer)	Electricity					kWh/MJ hydrogen
Operating supplies for the desulphurisation (e.g. kg catalyst per year)	Tap water				m³/MJ hydrogen	
Operating supplies for the de-ioniser (if applicable)	Potassium hydroxide					kg/MJ hydrogen
Output	Process gases (e.g. off gas from H ₂ purification) (please specify if applicable)				m³/MJ hydrogen	
CO ₂ (Emissions)	Net calorific value of the process gas used (if applicable)				MJ/m³	
NO _x (Emissions)	Composition of the process gas (e.g.% H ₂ , % O ₂ etc.) (if applicable)					
CO (Emissions)	Operating supplies and s	spare parts				
Other emissions (please specify)	Output					
Waste water	Is the Oxygen used? (PI	ease state the amount be	elow if yes)			yes/no
Miscellaneous waste	Oxygen					Nm³/MJ hydrogen
Amount of H ₂ losses during purification	Amount of H ₂ losses dur	ring purification				%
Are the H ₂ losses used as process gas? (if yes please specify in proces	Are the H ₂ losses used	d as process gas? (if yes	please specify in proce	ess gas column above in i	nputs)	yes/no
	Other emissions (pleas	se specify)				kg/MJ hydrogen

Case studies

 Hydrogen service station Hamburg-Hummelsbüttel CUTE-Project

Basic facts:
99.995 % purity
440 bar @ 85°C (350 bar
@ Ambient temperature)

31.08.2011

Summary

Guide for current and upcoming technologies

Strict rules and possibility to fit taylor-made solutions

Comparability between the different hydrogen technologies

Contact details

Dipl.-Ing. Aleksandar Lozanovski

Universität Stuttgart
Hauptstrasse 113
70771 Leinfelden-Echterdingen
Deutschland

Tel. +49(0)711-489999-32

Fax +49(0)711-489999-11

E-Mail Aleksandar.Lozanovski@lbp.uni-stuttgart.de

http://www.lbp-gabi.de

