Integrierte Planung und Monetarisierung von Umwelteffekten

Hannes Krieg

¹ University of Stuttgart, LBP-GaBi

Source: istockphoto.com

University of Stuttgart

Chair of Building Physics

Life Cycle Engineering

How to...

- ...include LCA results in planning and management processes?
- ...systematically monetize environmental impacts?
- Increase reduction targets at the lowest cost?

Monetization and Planning

Monetizing: expressing emissions in the environment in monetary values

- Economic quantification of damage caused
- Setting a monetary incentive to reduce impacts [1]

Current approaches for quantification:

- ➢ Willingness to pay [2]
 → subjective
- > Environmental damage cost [3] \rightarrow unclear & widely varying

Monetization and Planning

Excursus: Tragedy of the commons

- Environment is a resource that can be "used" by everybody
- For an individual, it is rational to consume more of it, as it allows to increase the individual profit
- \rightarrow Overconsumption of resources, as long as they are not limited

Monetization and Planning

Business theory: optimal allocation of scarce resources

- "Environment" is not an unlimited resource
- Use established business methods
- Support allocation of ecological resources
- \rightarrow Methodology for planning and monetization

Methodological approach

University of Stuttgart Chair of Building Physics Life Cycle Engineering www.LBP-GaBi.de

- Rents 2 types of multi-use plastic crates for vegetables [4]
 - Sugar cane based PE (X)
 - Conventional PE (Y)
- Market size: 50,000 t of fruits
 - \rightarrow 3,333,350 crates with a capacity of 15 kg

Status quo: 50 % conventional PE crates, 50 % sugar cane based PE crates

Boundaries for the system under study

Size to be optimized: Contribution to Margin (CtM)

- \rightarrow Integrates cost and revenue situation
- Product characteristics per circulation of crate

	GWP [kg CO ₂ -eq.]	AP [kg SO ₂ -eq.]	CtM [€]
Conventional PE crate	0.33	0.0015	0.50
Bio-based PE crate	0.10	0.0025	0.45
TOTAL	717,500	6,667	1,583,341

Goal: Optimize Portfolio while keeping environmental impacts constant

Max	0.50 x + 0.45 y		[CtM]
Subject to	0.33 x + 0.10 y	<= 717,500	[GWP]
	0.0015 x + 0.0025 y	<= 6,667	[AP]
	x + y	<= 3,333,350	[Market]

1st step: check if current portfolio is an optimal allocation of resources

x	У	S1	S2	S3	RHS
0	1	4.330	0	-0.430	1,666,675
0	0	0.004	1	-0.003	0
1	0	-4.330	0	1.430	1,666,675
0	0	0.220	0	0.430	1,583,341

 \rightarrow Number of each crate type and turnover remain the same; basis portfolio is an optimal allocation of resources

 2^{nd} step: CO₂-emission shall be reduced by 10 %

 \rightarrow New constraints are entered in the Simplex tableau

x	У	S1	S2	S3	RHS
0	1	3.69	-147	0	1,401,737
1	0	-2.21	488	0	1,825,637
0	0	-1.47	-341	1	105,976
0	0	0.85	146	0	1,522,405

Optimized Portfolio with new constraints

Results

- GWP reduced by 10 % (71,750 kg of CO_2 -eq.)
- CtM reduced by 4 % (60,936 €)
- Reduction cost $0.85 \in / \text{kg CO}_2\text{-eq}$.
- \rightarrow Unsaturated market demand of 106,000 circulations

3rd step: Is it possible to saturate the market while also maximising the CtM and reducing the environmental impacts?

- \rightarrow New Product line is considered
- → Bio-based with sustainable agriculture (no slash-and-burn agriculture, otherwise identical)
- → Higher production costs, therefore lower CtM (0.42 € per circulation)

Simplex tableau with new product line

 \rightarrow Identification of optimal portfolio with new product

Х	Y	Z	S1	S2	S3	RHS
0	1	0	3.6	-165.0	0.1	1,407,180
1	0	0	3.6	1.8	-3.9	1,407,180
0	0	1	-7.2	-1.7	4.9	518,990
0	0	0	0.4	41.9	0.3	1,554,797

 \rightarrow New product line results in an improvement of the portfolio!

Results

- Environmental impact reduced (-10% GWP compared to basis scenario, AP constant)
- Total CtM 98,2 % of basis scenario (1,554,797 €)
- Market saturated
 - → Reduction of 71t of CO_2 -eq. for \$ 28,500 (0.40 € / kg CO_2 -eq.)
 - → -1,8 % of CtM to save 10 % of CO_2 -eq.

University of Stuttgart Chair of Building Physics

Applications

- Determine "value" of impacts, e.g. for internal Carbon Tax
- Assess impacts of technical measures on organization performance
 - \rightarrow End of pipe technologies
 - → Process & Product innovation
 - \rightarrow Changed cost situation

Applications

- Determine eco-efficiency of processes with different costs and impacts but same outcome
- Compare Eco-efficiency of different locations with different cost situations and upstream value chains
 - \rightarrow Support decisions on site & location

Conclusions & Outlook

- Validation if portfolio mix is an optimal allocation of scarce resources
- Determination of shadow prices
- Evaluate the introduction of new product variants
- \rightarrow Reaching environmental target values at minimal cost

Open Points

- General feedback on methodology
- Further application potentials

Contact

Dipl. oec. Hannes Krieg

University of Stuttgart Chair of Building Physics (LBP) Department Life Cycle Engineering (GaBi)

Hauptstrasse 113 70771 Echterdingen Germany

- Tel. +49(0)711-489999-27
- Fax +49(0)711-489999-11

E-Mail hannes.krieg@lbp.uni-stuttgart.de

http://www.LBP-GaBi.de

Slide 21

University of Stuttgart Chair of Building Physics

References

[1] Beckenbach, Hampicke, Schulz: Möglichkeiten und Grenzen der Monetarisierung von Natur und Umwelt (*Possibilities and Limitations of Monetization of Nature and Environment*), Schriftenreihe des IÖW 20/88, Berlin, pp.3-18, 1998.

[2] Reap et al: A survey of unresolved problems in life cycle assessment – part 2: impact assessment and interpretation. *Int Journal of Life Cyce Assessment*, pp. 374-388, 2008.

[3] German Federal Environment Agency (UBA): Ökonomische Bewertung von Umweltschäden. Methodenkonvention zur Schätzung externer Umweltkosten *(Economic assessment of environmental damages)*, 2007.

[4] Albrecht et al: *The Sustainability of Packaging Systems for Fruit and Vegetable Transport in Europe based on Life-Cycle-Analysis – Update 2009.* On behalf of Stiftung Initiative Mehrweg SIM (Foundation of Reusable Systems under German Civil Law). Stuttgart/Michendorf, pp. 17-98, 2009.

